

관련사진1. DGIST 정보통신융합전공 임성훈 교수(우), 제1저자 이승훈 학위연계과정생
임성훈 교수 연구팀은 이미지 정보의 구성이 도메인마다 다를 수 있고 선형적 구성처럼 단순한 구성이 아닐 것이라는 가설을 세웠다. 연구팀은 이미지 정보를 전체적인 형태 정보와 스타일 정보로 뚜렷하게 나눌 수 있는 분리기를 설계했다. 이를 이용해 도메인마다 다른 가중치를 사용해 도메인 간의 차이를 반영할 수 있게 했다. 또한 분리된 이미지 정보들 간의 연관성을 이용해 각 이미지 구성에 알맞은 스타일 정보를 찾는 새로운 신경망 구조를 개발하는 데 성공했다.
연구팀이 개발한 신경망은 한 모델로도 여러 도메인의 이미지 변환이 자유자재로 가능한 장점이 있다. 이에 시각 인지 문제에 연구팀이 개발한 도메인 적응 알고리즘을 적용했을 때, 기존보다 2배 높은 정확도를 보일 수 있었다.
임 교수는 “이번 연구를 통해 개발한 신경망은 이미지 정보에 대한 새로운 분석이 담긴 신경망”이라며 “향후 관련 기술을 좀 더 개선한다면 많은 분야들에 적용되어 인공지능 분야의 발전에 긍정적인 영향을 줄 것으로 기대된다”고 말했다.
이번 연구 결과는 제1저자인 정보통신융합전공 이승훈 학위연계과정생이 참여했다. 아울러 인공지능 분야 최우수 국제학술지 ‘IEEE Conference on Computer Vision and Pattern Recognition’에 게재 및 지난 6월 25일 온라인 발표됐다.
Copyright ⓒ 서울신문 All rights reserved. 무단 전재-재배포, AI 학습 및 활용 금지